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Polyampholyte adsorption on a charged sphere
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A theory of the adsorption of polyampholyte chains on a charged spherical particle is developed. It is shown
that the equilibrium polymer density profile near an adsorbing particle may be found by balancing the
polarization-induced attraction of polyampholytes to the charged spherical particle with the monomer-
monomer repulsion. At intermediate values of the particle charge, the polyampholyte chains touching the
surface of the particle form a self-similar flowerlike structure. The structure of an adsorbed polyampholyte in
the flowerlike conformation is similar to that of a neutral star polymer.
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Polyampholytes are charged polymers carrying both p
tively and negatively charged monomers. In solution th
polymers may be anionic, cationic, or neutral~without net
electric charge!, depending on thepH. Interest in this type of
polymeric system is stimulated by their central role in a
verse number of fields ranging from materials science
colloids to the physics of disordered systems and biophys
The advances in our understanding of these complica
polymeric systems have led to applications in colloid sta
lization, wetting, adhesion, and lubrication. In fact, the s
bilizing properties of polyampholytes were recognized m
than 150 years ago by Faraday. He used gelatin—a poly
tide copolymer~protein! consisting of both basic and acid
amino acid groups—to stabilize gold colloidal particles@1#.
At the beginning of the 20th century, this property of gela
was successfully used by the photographic industry to st
lize silver bromide sols@2,3#.

One of the most interesting features of polyampholyte
their polarizability in external electric fields. The electr
field pulls oppositely charged monomers in opposite dir
tions, polarizing the chain. However, the redistribution of t
charged monomers inside the polymer coil is opposed by
chain elasticity. As a result of these conflicting forces t
polyampholyte chain is stretched into a ‘‘tug of war’’ con
figuration@4#. It has recently been established that the po
ization of polyampholyte chains is responsible for adsorpt
of these polymers on charged surfaces, resulting in forma
of multiple protective polymer layers. Even neutral polya
pholytes with equal numbers of positively and negativ
charged monomers are able to adsorb on a charged su
due to a polarization-induced attractive interaction@5–9#.
However, theoretical studies of polyampholyte adsorpt
have been limited to the cases of single chain adsorp
@5–7,9# or multichain adsorption on a planar surface@8#. In
this paper I study the adsorption of polyampholytes from
salt-free solution on a charged spherical particle, which m
ics the formation of the protective polymeric layer ne
charged colloids.

Consider symmetric polyampholyte chains of degree
polymerizationN with equal fractions of positivelyf 15 f /2
and negativelyf 25 f /2 charged monomers in au solvent
with dielectric constant«. In order for a polyampholyte
chain of sizeRch to be soluble the fluctuation-induced attra
tive interactions between charged monomers should be
than the thermal energykT, whereT is the absolute tempera
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ture andk is the Boltzmann constant. This attraction is of t
order of the thermal energykT per Debye volumer D

3 , where
r D'( l BN f /Rch

3 )21/2 ( l B5e2/«kT is the Bjerrum length!. If
there are many Debye volumes per chain (r D!Rch), the at-
traction is strong and a polyampholyte with equal numbers
N f1 positively charged andN f2 negatively charged mono
mers forms a compact globule@10,11# and precipitates from
solution. But if the Debye radius is larger than the chain s
(r D.Rch), the attraction is weak and the chain remains
most unperturbed. The conditionr D.R0 for a Gaussian
chain of radiusR0'aN1/2 can be written in terms of the
fraction of charged groupsf,

f , f weak'a/ l BAN, ~1!

wherea is the bond length.
Weakly charged polyampholyte chains (f , f weak) placed

near a charged spherical particle of radiusR and chargeeQ
are polarized by the nonuniform electric field created by
particle and forced into elongated configurations. The po
ization energy of a polyampholyte chain with the center
mass located at the distancer from the center of the particle
and having excess ofeqpositive and negative charges in tw
halves of a chain separated along the direction of the ra
vector r by distanceL(r ) ~see Fig. 1! is

Wpol
ch ~r !

kT
'2

l BQq

r 2 L~r ! for L~r !<r . ~2!

If the positions of the charged monomers along the polym
chains are uncorrelated, the typical excess chargeeq in two
parts of a chain is of the order ofeAf N. The balance of the
polarization energy of the chain~2! with its elastic energy
kTL(r )2/a2N gives the average value of the distanceL(r ) as
a function of the distance from the particle,

FIG. 1. Schematic sketch of a polyampholyte chain nea
charged spherical particle.
©2001 The American Physical Society02-1
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L~r !'
a2l BQqN

r 2
'

l BQR0
2Af N

r 2
'R0S r 1

r D 2

. ~3!

The deformation of the chain from its Gaussian shape be
at distancesr smaller than the crossover distancer 1

'( l BQR0Af N)1/2. At larger distances (r @r 1) the chain
keeps its Gaussian shape. Substituting the expression
L(r ) given by Eq.~3! back into the expression~2! one ob-
tains the polarization energy of a polyampholyte chain,

Wpol
ch ~r !

kT
'2

~ l BQR0Af N!2

r 4
'2S r 1

r D 4

. ~4!

Above the overlap concentration in the adsorbed lay
the polarization-induced attractive interaction~4! between
the polymer chains and the charged sphere is stabilized
the repulsive interactions between monomers. In au solvent
for the polymer backbone these repulsive interactions
due to three-body contacts. Thus, the equilibrium den
profile c(r ) near the charged spherical particle can be
tained by balancing the polarization-induced attraction
~4! with the three-body repulsionkTNa6c2(r ),

c~r !'c0* S r 1

r D 2

'c0*
l BQR0Af N

r 2
for r ,r 1 , ~5!

wherec0* 'a23N21/2 is the overlap concentration. At lengt
scalesr ,r 1 the polymer chains form a semidilute polym
solution with polymer density inversely proportional to th
square of the distancer from the center of the charge
sphere. This polymer density profilec(r ) has stronger dis-
tance dependence than that in the case of polyampho
adsorption on a charged planar surface, where it decays
perbolically with distance@8#. The crossover from the sem
dilute to the dilute regime of the adsorbed chains occur
the distancer'r 1 where the polarization energy~4! of a
polyampholyte chain becomes of the order of the therm
energykT. Therefore, one can considerr 1 to be the thickness
of the adsorbed polymer layer. The polymer density pro
near the charged spherical particle is shown in Fig. 2.

Integration of the polymer density profile through th
layer thicknessr 1 gives the amount of adsorbed polymers

G'a22~ l BQAf N!3/2R0
1/2. ~6!

FIG. 2. Polymer density profile in the adsorbed layers forQ
,Q2. Logarithmic scales.
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There will be more than one chain in this adsorbed layer
values of the chargeQ larger thana/ l Bf 1/2.

As the chargeQ on the particle increases the size of t

chain L' l BQR0
2Af N/R2 near the surface of the particler

'R increases as well. It becomes of the order of the part
size at a value of the chargeQ of the order of

Q2'
R3

a2l Bf 1/2N3/2
. ~7!

At higher values of the charge (Q.Q2) the adsorbed laye
near the particle surface can be viewed as a brush of p
disperse loops.

To describe this polydisperse brush I will use the stro
stretching approximation@12,13# and assume that all loop
with 2g monomers and given charge distribution$q(t)% are
stretched in the same way. This means that all the mid
points of these loops are located at the same distancer g(g)
from the center of the particle—the Alexander–de Gen
approximation for the polydisperse brush. The total free
ergy of a loop includes three terms,

Fg5Felast
g 1Wpol

g 1Wrep
g . ~8!

The elastic energyFelast
g of a loop is

Felast
g

kT
'

1

2a2E0

gS drg~ t !

dt D 2

dt. ~9!

The electrostatic energy of a loop with 2g monomers with
charge distribution$q(t)% in the hyperbolic electrostatic po
tential of a charged sphere is

Wpol
g

„$q~ t !%…'kTE
0

g

q~ t !
l BQ

r g~ t !
dt. ~10!

The monomers in the loops also interact with each ot
through short range excluded volume interactions. In
mean-field approximation these interactions can be appr
mated by the effective external potentialh(r ) whose depen-
dence on the distancer has to be found self-consistently. Th
contribution to the loop free energy due to short range in
actionsWrep

g is

Wrep
g 'kTE

0

g

h„r g~ t !…dt. ~11!

After combining all three terms~elastic, electrostatic, and
excluded volume! the total free energy of a loop with give
charge distribution$q(t)% has the form

Fg

kT
'

1

2a2E0

gS drg~ t !

dt D 2

dt1E
0

g

q~ t !
l BQ

r g~ t !
dt1E

0

g

h„r g~ t !…dt.

~12!

In the strong stretching approximation the trajectory of t
polymer chain is determined by the classical path of
functional ~12!,
2-2



o

g

th

of

le
on

n

ch

n
e

’’

ive
e
-

ero

in.

n
-
rm

n-

q.

s

e
y
r

he
ple

POLYAMPHOLYTE ADSORPTION ON A CHARGED SPHERE PHYSICAL REVIEW E63 051802
a22
d2r g~ t !

dt2
52q~ t !

l BQ

r g
2~ t !

1
dh„r g~ t !…

dr
~13!

with the boundary conditionsr g(0)5R and drg(g)/dt50,
which correspond to zero tension at the middle of the lo
with given charge distribution$q(t)%. I will assume that the
charges in a loop are randomly distributed with avera
value ^q(t)&50 and d-functional correlationŝ q(t)q(t8)&
5 f d(t2t8).

Equation~13! is a second order differential equation wi
Gaussian random noiseq(t). To solve this equation I will
representr g(t) as the sum of its average value^r g(t)& and
the fluctuation with respect to it,dr g(t). In terms of these
new variables Eq.~13! can be rewritten as a system
coupled second order differential equations,

a22
d2^r g~ t !&

dt2
'^q~ t !dr g~ t !&

2l BQ

^r g~ t !&3
1

dh„^r g~ t !&…

dr
,

~14!

a22
d2dr g~ t !

dt2
'2q~ t !

l BQ

^r g~ t !&2
. ~15!

The solution of Eq.~15! for given charge distributionq(t)
and average trajectorŷr g(t)& is

dr g~ t !5a2l BQE
0

t

dsE
s

g q~k!

^r g~k!&2
dk. ~16!

Multiplying both sides of this equation byq(t) and averag-
ing it with respect to distribution of the random variab
q(t), one has the following expression for the correlati
function: ^q(t)dr g(t)&5a2l BQ f t/^r g(k)&2 . After substitu-
tion of the expression for the correlation functio
^q(t)dr g(t)& into Eq. ~15! the differential equation for the
average trajectorŷr g(t)& reduces to

a22
d2^r g~ t !&

dt2
'2 f ~alBQ!2

t

^r g~ t !&5
1

dh„^r g~ t !&…

dr
.

~17!

Let us construct a solution of Eq.~17! that is scale invari-
ant and is left unchanged under the transformation$t
→bt,^r g(bt)&→bp^r g(t)&%. All terms of Eq.~17! will stay
unchanged after this transformation if the functionh(r )
.r 22 and the exponentp51/2. In equilibrium all three
terms in Eq.~17! are of the same order of magnitude, whi
allows one to choose the effective external fieldh(r ) in the
form

h~r !'C
f 2/3a2/3l B

4/3Q4/3

r 2
, ~18!

whereC is a numerical constant whose value may be fou
by matching the density profile at the boundary of this inn
layer atr 5r 2 with that in the outer region (r 2,r ,r 1). In
the strong stretching approximation the ‘‘time derivative
05180
p

e

d
r

d/dt can be transformed into the space derivat
^vg(r )&d/dr, where^vg(r )& is the average stretching of th
chain at a distancer from the center of the particle. Trans
forming the time derivative on the right-hand side of Eq.~17!
into the space derivative and taking into account the z
tension condition at the middle of the loop att5g, one can
write a relation between the number of monomersg in one-
half of the loop and its middle point positionr g

max:

r g
max'C1/6f 1/6a2/3l B

1/3Q1/3g1/2. ~19!

Substitution ofg'N in the last equation gives the sizer 2 of
the largest loop formed by the whole polyampholyte cha
Thus, the self-similar brush of loops ends at the distance

r 2' f 1/6a2/3l B
1/3Q1/3N1/2. ~20!

Since Eq.~17! is invariant with respect to transformatio
$t→bt,^r g(bt)&→Ab^r g(t)&% the solution of this second or
der differential equation may be written in the general fo

^r g~ t !&5@ f a4C~ l BQ!2#1/6AtuF lnS t

gD G , ~21!

where the functionu(x) satisfies the second order differe
tial equation

uxx5
u

4
1

2

C3
~u252u23! ~22!

with initial conditionsux(0)521/2 andu(0)51. Unfortu-
nately, it is impossible to obtain an analytical solution of E
~22! in the whole interval ofxP@2`,0#. However, in the
interval ofx whereu(x)<1 the approximate solution of thi
equation isu(x)'(12x/21x2/8), which results in the fol-
lowing expression for the average trajectory^r g(t)&:

^r g~ t !&'C1/6f 1/6a2/3l B
1/3Q1/3AtF12 lnSA t

gD
1

1

2
ln2SA t

gD G . ~23!

For a u solvent for the polymer backbone the effectiv
potentialh(r ) is proportional to the probability of three-bod
contactsa6c(r )2. Taking this fact into account the monome
density distribution in the adsorbed layer is

c~r !a3'C1/2
f 1/3a1/3l B

2/3Q2/3

r
'c0* a3

r 1
4/3

R0
1/3r

for R,r ,r 2 .

~24!

However, at length scalesr 2,r ,r 1 the polymer density
profile is still given by Eq.~5!. The polymer density profile
in this regime is sketched in Fig. 3.

These results for the polymer density profile and for t
loop size can be understood using the following sim
2-3
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Flory-like arguments. The polarization energy of a loop co
taining g monomers with the center of mass located at d
tancer 2R@R from the surface of the particle with exce
charges in the two halves of the loop ofq'( f g)1/2 separated
by a distancer g , is given by the expression

Wpol
g

kT
'2

qlBQ

r g
'2

Af glBQ

r g
. ~25!

The relation between the loop sizer g and the number of
monomersg in it is obtained by balancing the loop polariz
tion energyWpol

g @Eq. ~25!# with its elastic energyFelas
g

'kTrg
2/ga2,

g~r g!'r g
2a24/3l B

22/3f 21/3Q22/3. ~26!

The density of the polarization energyUpol(r ) at a distance
r from the center of the sphere is equal to the concentra
c(r )/g(r ) of the loops withg monomers times the polariza
tion energy of a loopWpol

g (r )'2Af g(r ) l BQ/r ,

Upol~r !

kT
'2c~r !A f

g~r !

l BQ

r
'2c~r ! f 2/3

~ l BQ!4/3a2/3

r 2
.

~27!

The balance of this polarization energy density and the th
body repulsiona6c(r )3 leads to the equilibrium density pro
file given by Eq.~24!.

The loop distribution functionrg in a layer of thickness
r 2 can be found from the mass conservation condition

E
1

N

rggdg.E
R

r 2
c~r !r 2dr'NS l B

2Q2f

a2 D 2/3

. ~28!

The solution of this equation is ad function,

rg'S l B
2Q2f

a2 D 2/3

d~g2N! for 0,g,N. ~29!

It is interesting to point out that the structure of adsorb
polyampholyte chains at length scaleR,r 2R,r 2 is similar
to that of star polymers in au solvent@14# with the number
of branchesn'( l B

2Q2f /a2)2/3 and all end points located a

FIG. 3. Polymer density profile in the adsorbed layers forQ
.Q2. Logarithmic scales.
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the periphery of the layer of thicknessr 2. The polyampholyte
chains in this starlike conformation can be viewed as an
ray of blobs, whose sizej(r )'n21/2r increases linearly with
the distancer from the center of the particle. A schemat
sketch of the chains in this inner adsorbed layer with thi
nessr 2 is shown in Fig. 4.

Integrating the polymer density profile betweenR and r 1
one obtains the amount of polymer adsorbed,

G'N~n1n9/8!'NS l Bf 1/2Q

a D 3/2

, ~30!

which is dominated by the outer regionr 2,r ,r 1 . It in-
creases with increasing chargeQ of the particle.

I have presented a theory of multichain polyampholy
adsorption on a charged spherical particle. The polym
equilibrium density profile in the adsorbed layer is det
mined by the balance of the polarization-induced attract
of the chains to the charged particle and the monom
monomer repulsion. At small values of the charge on
particle Q,Q2 , the adsorbed polyampholytes form mult
layers of polarized dipoles, with the polymer density in t
adsorbed layer decreasing asr 22. The adsorption stops a
distancesr'r 1 where the polarization-induced attractive i
teractions become of the order of the thermal energykT. At
intermediate values of the charge on the particleQ.Q2 ,
polyampholyte chains touching the particle surface form
starlike structure with the number of ‘‘branches’’ increasi
with increasing particle charge asQ4/3. The polymer density
in this self-similar layer is inversely proportional to the di
tancer from the center of the particle. The outer layers (r 2
,r ,r 1) of the adsorbed chains are still formed by polariz
polyampholyte ‘‘dipoles’’ with the polymer density decayin
as r 22.

The financial support of the NSF under Grant No. DM
9730777 and of the Eastman Kodak Company is gratef
acknowledged. The author is grateful to M. Rubinstein a
E. Zhulina for valuable discussions.

FIG. 4. Schematic sketch of the structure of adsorbed poly
pholyte chains on a charged spherical particle on the length s
R,r ,r 2.
2-4



of

,

l-

o-

s.

POLYAMPHOLYTE ADSORPTION ON A CHARGED SPHERE PHYSICAL REVIEW E63 051802
@1# P.-G. de Gennes and J. BadozFragile Objects ~Springer-
Verlag, New York, 1996!.

@2# A. G. Ward and A. Courts,The Science and Technology
Gelatin ~Academic Press, London, 1977!.

@3# R. J. Cox,Photographic Gelatin~Academic Press, London
1972!.

@4# H. Schiessel and A. Blumen, Theor. Simul.6, 103 ~1997!.
@5# J.-F. Joanny, J. Phys. II4, 128 ~1994!.
@6# A. V. Dobrynin M. Rubinstein, and J.-F. Joanny, Macromo

ecules30, 4332~1997!.
@7# R. Netz and J.-F. Joanny, Macromolecules31, 5123~1998!.
05180
@8# A.V. Dobrynin, S.P. Obukhov, and M. Rubinshtein, Macr
molecules32, 5689~1999!.

@9# E. B. Zhulina, A. V. Dobrynin, and M. Rubinstein, Eur. Phy
J. B ~to be published!.

@10# P. G. Higgs and J. F. Joanny, J. Chem. Phys.89, 5273~1988!.
@11# A. V. Dobrynin and M. Rubinstein, J. Phys. II5, 677 ~1995!.
@12# A. N. Semenov, Zh. E´ksp. Teor. Fiz.88, 1242 ~1985! @Sov.

Phys. JETP61, 733 ~1985!#.
@13# T. M. Birshtein and E. B. Zhulina, Polymer30, 170 ~1989!.
@14# M. Daoud and J. P. Cotton, J. Phys.~France! 43, 531 ~1982!.
2-5


